
Mid-Semester Report
My name is Travis Hite, and I am a student working with the

Research Experience for Undergraduates program funded by the
National Science Foundation.  My home college is Kennesaw State
University, however I plan on transferring to UGA sometime in the
next year.  The specific REU I am attending is being held at the
Auburn campus, and is in the general field of computer science
and engineering.

I have been working for the past five weeks with Dr. Dozier
on an evolutionary robot.  The robot we are using is a Khepera
robot.  It is 55 mm in diameter and 30 mm tall.  It has a
Motorola 68331 processor, eight infra-red proximity and light
sensors, and two DC motors.

What we are trying to do with this Khepera robot is to build
a non-biased interactive evolutionary algorithm in order to teach
it not to hit walls.  While this has been done before, this
process can take many hours and up to several days to evolve to a
suitable outcome.  What is revolutionary about our approach is
that we have come across a method to evolve our robot in merely a
matter of minutes.

Our Khepera uses a general regression neural network.  A
physical concept of the function of the network is to picture a
round disc, which would represent the robot.  Divide this robot
straight down the center.  One wheel is on either side of the
robot.  On the top hemisphere of the robot, 6 sensors are equally
distant from each other, as well as 2 on the bottom hemisphere.
The top sensors are set to wall detection.  Light bounces back to
the sensors which take a reading.  When a reading of 1023 is
received (chosen because it is the highest possible reading), the
sensors activate with a value of 1.

The sensors then feed through a connection to the wheel,
with the GRNN being the focal point.  This is where our algorithm
comes in to play.  We have defined a set of 4 weights.  The first
three weights (each corresponding to the front sensor, the mid-
front sensor, and the mid-back sensor) have a range of -30 to 30.
The fourth value (the sigma value) is between 1 and 512.  An
example value would be {18,-26,-4,354}.

The sigma value controls the overall wheel speed of the
robot.  The higher the value, the slower the robot goes.  The
other three weights either speed up or slow down the wheel on the
opposite side of the sensor it is responding to.  An optimal
result is to have the robot go as slow as possible and turn as
fast as possible to avoid walls and decrease potential damage.
This result would have the value of {-30,-30,-30,512}.

The use of only four weights is another part of speeding up
the process.  Many algorithms will use 40 or more weights in
their experiment.  Using less weights decreases the amount of



processing time required for each individual set of weights.

For our experiment we are using a simple white poster board
stage with size 30x30 cm.  The small size of the robot and the
area, as well as the small size of the stage and the cushioned
poster board are designed to keep the robot safer.  A smaller
robot will have a smaller overall velocity for the same
comparative results, which leads to better safety for the robot.

For a user-defined number of cycles, Interactive
Evolutionary Computation is used (From here on referred to as the
IEC).  The beginning of IEC is to create a population of
individuals are randomly generated, weighted at 0 to keep the
population from being biased.

After a population is created, two candidates are taken at
random to be parents.  If one of the candidates has been aborted
in the past, the sign of one of the first three weights is
randomly flipped (Obviously, from the initial population, this is
not a problem since at this point none of the candidates have
been evaluated yet).  This is called sign mutation.  Each parent
is allowed to control the robot for four seconds.  During this
time, the user interacts with the robot through a webpage
connected to a server to the computer hosting the experiment.
For each button click, or when the button is held down, hits are
assigned to the individual.  The winner of each tournament is the
individual with the least number of hits.  If the robot uses a
behavior that is extremely dangerous (erratic, hits walls often
at a high velocity, lunges back and forth, etc.), the candidate
is aborted and assigned the maximum number of hits.

The difference between the two individuals is then memorized
for later use.  For instance, if we had an individual p1{-14,
-25, -17, 136} and  another individual p2{-20,-25,-22,388} the
distance between the two would be <1,0,1,-1,1>.  A value of 1
means the first number was higher.  A value of 0 means the values
were equal.  A value of -1 means the value was less.  The last
value, which can only be -1 or 1, represents the winner (either
the first value or the second).  Since the second value is both
slower and will turn faster, the second value won.

After both individuals are tested and a difference is set,
one of our evolutionary operators come in to play.  If both
individuals were aborted, a random individual from the population
is selected and mutated twice to replace both parents.  If there
is a case where the winning behavior is feasible and the losing
behavior is infeasible, uniform-bounded mutation is used.  For
instance, take a behavior {-14,-25,-22,418} to be the winner.
And say the range of mutation is between -12 and 12 for the first
three weights and -50 to 50 for the last weight.  Any results
between {-26,-30,-30,368} and {-2,-13,-10,468} would be entirely
possible.  The mutation then overwrites the loser, the winner is
put back into the population, and a new individual is selected to
compete against the loser.



Another scenario occurs when a winner is selected that has
not been aborted but has not won at least two tournaments.  When
this occurs, uniform-crossover is used.  What happens with
uniform-crossover is a new individual is created from the parents
with a probability of .5.  For instance, take two individuals
{-22,-28,-18,464} and {-2,8,-24,316}, where the winning parent is
the previous parent.  The offspring generated could potentially
look like {-22,8,-24,464}.  Any combination of the two parents is
possible.  The offspring then replaces the losing parent.  The
winner is placed back in the population, and a new candidate is
selected to go against the newly created individual.

The third scenario occurs when both parents have been deemed
to be feasible (not aborted, two wins).  In this case, uniform-
bounded mutation is used again (in the same way as previously
discussed).

When the IEC is finished, the MEC begins.  At this point,
the robot becomes still, and “meditates” (thusly the M) on its
previous results.  Two individuals are taken from the population
and generate a distance vector as before.  A search is then
conducted for the difference vector that most closely represents
the difference vector it came up with.  A winner is then selected
based on which individual was selected before.  Thusly, previous
user preference is applied throughout the meditative process.
Evolution continues as it occurred in the IEC.

Using the above scenario, the algorithm produces what it
considers to be its best example.  Generally we receive a good
individual after the entire process, however several problems
have been noted.

For one, since user interface time is condensed, any human
error can create exponential errors through the MEC.  The only
real way to alleviate this problem with the current design is to
be sure to pay close attention to the robot during the IEC time.
This is not a major problem, since the IEC generally only takes a
few minutes to go through all of its iterations.

Another problem has to do with the sigma value.  Since the
difference between 256 and 512 is hard to see with the human eye,
often a bad sigma value can occur.  The problem is also greater
because hitting the robot just because it is moving faster can
throw off the other weights.  An alternative to this, though
admittedly biased in nature, is to hit the robot every time it
comes close to a wall regardless of turning or not.  The concept
here is that a robot that moves faster will come close to the
wall more often.

What I have been attempting to do in the past few weeks is
to do as much research as possible in order to catch up with the
current research, and to come up with ideas to improve the robot.
While I have been here five weeks, I can say I have only done



about three weeks of work, since the first week was Biaz's
presentation on networking and an introduction to Graduate life
and the second week Dozier was out of town leaving me to brush up
on my programming skills.

The first idea we had on improving the robot was improving
the interface itself.  While Joe and Lacy are still working on
their improvements, the idea we came up with for my improvement
was found to be infeasible.

The idea was to build a steaming webcam into the webpage
used to interact with the robot so the robot could be left on and
interaction could take place from anywhere.  I did some research
on past experiments on this area and information about found out
about the java media library.  However, even the best results saw
delays up to eight seconds.  The problem is that how java steams
video is that it writes the information received from the webcam
to a buffer file.  This file is then steamed to the receiving
individual where it is decoded and displayed.  Though we are sure
there must be a way to bypass this delay on a large network such
as Auburn's that would ensure maximum speed, it would have been
too much work to attempt to implement.

In the meantime, I attended a series of lectures on
Artificial Intelligence design as presented by Dr. Dozier.
During this time Dozier made sure that material I was presented
to read was tangential to the topic in class.  The very first
thing he had me do was read his paper “Evolving Robot Behavior
via Interactive Evolutionary Computation: From Real-World to
Simulation”.

In it he explains the basics for his robot and compares it
to past experiments ran by other individuals.  At the end he
presents various examples of trial runs to show the results of
the process.  Though it makes for a very thorough explanation, it
is rather difficult to read for someone new in the field.
However, it gave me a good overview of the situation.

He then had me read “A Survery of Artificial Life and
Evolutionary Robotics” which explains several past experiments in
the field and compares information.  It greatly aided in my
understanding of the uses and history of the field.

I also read serveral other papers during this time including
a chapter of a book written by Dozier and several others titled
“An Introduction to Evolutionary Computation.” and several others
that shall be listed on the website this essay is available on.
Most of the other papers are mentioned are on evolutionary
robotics or in related fields and were mostly meant to strengthen
my knowledge of material within the field and give me a better
understanding of what we are doing.

One of the most important things Dozier had me read during
this time was the book “Evolutionary Robotics” by Stefano Nolfi



and Dario Floreano.  In it they discuss design concepts and
information on the fundamentals of genetic algorithms and neural
networks.  They also talk about several key experiments conducted
and their impact.  A short powerpoint presentation using
information from the beginning of the book will be available on
my website.

After the presentation he presented me with the code and
went over it with me.  After the meeting in which we went over
the various evolutionary procedures mentioned earlier, I was
asked to come up with some better evolutionary procedures to be
used.

I then presented to him several ideas for changes that could
be made to the way evolution takes place.  One of the ideas was
an observation that sometimes amongst two good candidates the
user can end up picking the worse candidate and making a poor
vector to use.  My idea was to use an ELO rating system and
modify the number of hits based on difference in rating.  Without
getting too far into how ELO works, instead of just counting the
number of wins and losses to determine ranking, it modifies
ranking based on a percentage of difference between the winner's
ranking and the losers ranking, and adjusts accordingly.  Using
this addition would make the process more fair and prevent
mistakes, but could lead to a bias towards older individuals.

Another idea I had was when both parents were aborted, use
the mutated individual, but have the second offspring be an exact
opposite mutation from the first, so at least we could come up
with some better distance vectors between to use during the MEC.

In the end we decided instead to use naive bayesian
modifiers instead to push mutation more towards the area we
required.  Originally this modifier was used on expert systems,
which used a very basic if/then set of scenarios.  However in
real life situations this sort of black and white scenario leads
to biased results.

Instead, this uses a set of hypothesis and evidence (either
one to multiple or multiple to one, never multiple to multiple)
to find the conditional probability of an occurence.  This has
not only been used effectively in expert systems, but also in
data mining and even in categorizing text documents.

Our plan is to apply this concept to genetic mutation in
order to bias mutation more towards user preference.  For
instance, if previous sigma values went in a positive direction
at a probability of 25/35 and at a negative direction at a
probability of 10/35, the channel would be adjusted at a rate
of .75*(25/35).  The .75 would be put in place in order to keep
the rate from every reaching 100%, which would make mutation
stagnant and keep us from being able to effectively navigate
through the search space.



Currently I am evaluating data from previous runs to find
how often negative user preferences are found.  I have found that
most of our problems seem to come primarily from closer to the
end of the run, which would make sense since at this point most
of the individuals would start looking similar and would be hard
to distinguish better individuals from.

I have also found, as previously stated, that sigma values
tend to be fairly poor across the board, which would be our
biggest hinderenace to using the bayesian modifiers and applying
them to mutation.

Our goal by the end of the summer semester is to contribute
some overall change to the code and hopefully design a better
algorithm that better represents user preference.  Following this
the team working on the robot is going to write out a paper to be
submitted to conference on our findings.


