

Mid-Semester Report:
Dozier's Amazing Evolutionary Khepera

As presented by Travis Hite

Khepera Design Aspects

● 55 mm in diameter
● 33 mm tall
● 68331 Motorola processor
● 8 infra-red sensors
● Max speed 127 mp (motor pulses)

● Roughly one meter per second

The Neural Network

● Hemispheres
● 3 sensors for proximity detection
● 1 wheel per 3 sensors
● GRNN

The Stage

● 30x30cm
● White cushioned cardboard
● Wall proximity detection and avoidance

The Sensors

● Each sensor connects to GRNN
● GRNN holds three responses

● {1023,0,0} Front
● {0,1023,0} Mid-Front
● {0,0,1023} Mid-Back

The Inidividuals

Four values
First three weights range from -30 to 30

● Effects wheel speed
● Each corresponds to a specific sensor

Final rate ranges from 0 to 512
● Effects overall motor speed
● “Sigma value”

Example individual: {-20,4,18,423}

The IEC

1) Random population is generated
2) Each individual controls the robot for 4 seconds*
3) User interfaces with robot
4) 2 individual tournament
5) Least hits wins
6) Construct difference rules
7) Evolve individuals

*unless aborted

The Difference Rules

Basic distance comparison between two individuals
Four integer values {-1,0,1}
One interger value {-1,1}
Example:
 p1 = {-14,-25,-17,136}
 p2 = {-20,-25,-22,386}
 v = < 1, 0, 1, -1, 1>

Evolution Rules
Candidate was aborted previously – sign mutation

 p1={-14,28,-12,489}
result={-14,-28,-12,489}

No feasible result – uniform crossover
 p1={-12,-18,-24,582}
 p2={-28,-4,16,212}
result={-12,-4,-24,212}

Both aborted – feasible candidate from population
receives uniform-bounded mutation twice, then
parent is mutated as well .

 p1={-14,-28,-12,489}
result={-21,-19,-4,456}

One feasible parent – uniform-bounded mutation

The MEC

Khepera stops moving to “meditate”
Continues tournament, generates distance vector
Uses distance vectors generated during IEC
Evolution continues as previously mentioned

Problems

User error rate exponential
Sigma value hard to control
Interface could be better

The Interface

Java webcam interface:
● Too much delay
● Read, buffer, stream, receive

The Weights

Adjusting for user error
● One idea: ELO Rating

Bayesian Modifiers

Originated in expert systems
● If-Then data complex

Based on simple probability between a hypothetical
situation and an event

A basic implementation would look like this:

Modified for Our Purposes

If we only evaluate for one function of our weights
depending upon the winning value of the distance
value, p(A) can effectively be made 100%

Also, if we flip all the values when the winning
distance is -1, we can effectively make p(B) 100%

Example:
<1,0,-1,1,-1> becomes <-1,0,1,-1,1>

Applying for our purposes

Mutation rate can be adjusted on a sliding scale based
on user preference.

For instance, take a standard mutation rate for the first
weight being {-12...12}, and we receive a -1 during
25/35 evaluations

We can adjust the mutation rate accordingly:
.75*(25/35)*-1 = -0.536

.75 applied to keep mutation rate from reaching 100%
and completely biasing our search

New mutation rate: {-18...6}

Problems

Further amplification of user-related false negative
results

Further amplification of sigma value problems

Questions or comments?

