
An Introduction to Search Engines

Travis Hite
Matt Glazebrook

Andy Poore
Russ McCoy

Abstract

The size and diversity of the internet
has made information retrieval one of the
key fields in data representation.
Websites like Google index as much of
the internet as possible providing a simple
way for users to input keywords in order
to efficiently retrieve a list of results
organized by importance. The need to
give users the ability to find information
quickly and efficiently will only become
more challenging as the data available on
the internet becomes increasingly larger
and more unwieldy.

As the field becomes more and more
diverse, the need to comprehend the
simple components vital in creating a
search engine will increase.
Understanding the complexities that must
be surmounted is important in broaching
this subject. As the field expands, the
importance in understanding the basics
inherent in creating a search engine
becomes vastly more important.

1. Introduction

There are many ways to begin
understanding the functionality of search
engines. There have been many books
written on the subject matter, but the
concepts presented without an
overarching theme may feel abstract to
the reader. We present our own search
engine, from start to finish, along with
information regarding the process
which we used to create it, as an
instructional tool for the targeted user.

1.1 Concept

An important thing to remember is not
to reinvent the wheel. There are already
many search engines that do the same
thing. We feel that creating a search
engine with a slightly modified goal is the
best solution.

As such, we have created a search
engine that will solely crawl powerpoint
files from educational websites. We feel
this is enough of a departure to make
some minor difference between the
underlying basic functionality and to
display the problems inherent in creating
a search engine.

1.2 Functionality

We begin by creating a general
overview of the functionality of our search
engine. Later, we will break this down
into unique segments in order to instill a
greater understanding of the functionality
of this basic search engine to the reader.

The first step is to crawl the internet
for important files. The internet is a large,
heterogeneous creation, and must be
examined on a large scale. We must
begin by actively seeking new locations,
and extracting relevant documents.

We then store the files locally so they
can be properly dissected for relevant
information. Until these files have been
properly processed, we have not yet
gained anything useful from them.

Following this, the information must
be indexed. Useful text is extracted from
the powerpoint slides and converted to a
format useful to the algorithm. The terms

1

used in a document are noted, as well as
the frequency with which they are used.

At this point, the user will access the
front end and submit a string representing
the information for which he is searching.
We are using a simple weighted boolean
search method, which uses the terms
“and”, “or”, and “not” to sort the
documents efficiently.

The search is finally evaluated
against all documents that have been
indexed. A comparison of the terms used
in the search is made with those which
were indexed. The results are listed in
the order of highest to lowest ranking of
importance, and then returned to the
user.

3. Crawling

The very first step is to crawl the
websites; i.e., we scan every website we
can find. Any information pertaining to
our search criteria is noted.

We begin with a list of starting URLs,
also called nodes. This primary listing of
URLs is called a seed. We begin at our
first node. Next, we examine the web
page, specifically looking for links. If we
find a URL that links to a .edu domain, we
add this to the end of the list. If it links to
a .ppt file, it is converted to a text file and
stored.

The page is parsed for URLs by
looking for the tag. After the
first page is scanned, the URLs are
checked against the alreadySearched file.
If a page is found that already has been
searched, it is not saved. If it has not
been searched, it is added to the end of
the toBeSearched file.

There are two methods for continuing.
Initially, there is the breadth first method,
also known as first in first out (FIFO).
Consider the hierarchy of URLs to be
searched as a tree, branching as it goes
down. Using FIFO, the top URL in the list

is searched, ensuring pages are searched
level by level.

Also, there is also the depth first
method, also known as last in first out
(LIFO). In this method, the last URL
added is the first one to be searched.
The tree diagram is still applicable under
this method. However, instead of ordering
by level, it searches as far as it can down
a specific path.

The powerpoint to text conversion
proved to be the most difficult step. A
powerpoint file, seen as a normal text file,
is garbage to the human eye. Extracting
relevant information, in an efficient
manner, proved difficult. A third party
solution was vital. Several vendors
provided solutions, however the vast
majority demanded some form of
compensation for their product.

We finally decided on using Aspose,
which is a free utility. However it is
specifically a file management product,
and has a hefty API. Our solution was to
loop through all slides. Each slide
contains a certain number of “shapes”, or
specifically, fields for information to be
held on a slide. The type of shape is then
checked. If it is a type that contains
regular text, it is stored to a text file. Any
other form of information is dumped.

This process continues indefinitely, as
it is impossible for one person to crawl the
entire internet. Also, websites change
over time, and a date would need to be
set where the nodes, which have already
been searched, can be searched again.

2

Graph 1

4. Indexing

After crawling we are given a
collection of text files containing purely
the text of the powerpoint files. However,
in their present state, they still mean
nothing, until we have parsed the text
files, and indexed them for relevant
information. At the end of this process,
we will obtain an array list that our
algorithm can use.

To begin, each text file is checked for
stop words. Stop words are words that
are used commonly, but frequently, or
have no meaning in context to the
remaining text. These words need to be
removed. For example, you might want to
filter out articles or adverbs. Examples of
stop words would be "of" "the" "you" or
"and".

Following this, the information needs
to be serialized; i.e., it should be
processed in such a way that is more
efficient than having the program read a
straight text document. The text is
parsed, to remove spaces and
punctuation, and saved as an array list.

This array is then scanned, word by
word, and if a term is read that has not
been read before, it is added to the list of
terms. If the term already has been found
within the file, the total number of times
that term has been found, or, the term
frequency, is noted.

The terms, and their term frequency,
are then stored. Finally, the array is
deserialized and stored permanently.

4. The Algorithm and Presentation

It is extremely important to keep the
interface simple to the user. As stated
previously, we have decided to use a
boolean search method for simplicity's
sake.

In boolean search, there are three
fields of importance. If it is entered in the
"and" field of the query, it must be in the
document returned. If it is in the "or" field,
it is preferred to be in the document, but it
is not vital. Finally, if it is in the "not" field,
it should not be in the document returned
at all.

Rather than implement such harsh
search restrictions, we have decided to
assign a weight to each word. This keeps
from totally eliminating entries that may
have been valuable to the user, but may
have contained a word, in a different
context, than the one they had in mind.

In comparison, there are several
other ways to compare the documents
against the user's input. Consider for
example, if each word is a dimension in a
graph, and the term frequency is a vector
within that dimension, such as one would
find in a vector-space graph. One could
construct a vector for each document and
the query. Then, consider the difference
of these vectors, to find the most relevant
term. However, this would raise some
subtle problems, as to how many
dimensions should be considered and
how best to model the vector for the
user's query. In the end, it seemed as if
the boolean model would be the best fit
for our scenario.

Each document is looped through,
with the user's query used as input. For

3

Graph 2

each term in the document that matches
the user's input in the "and" field, 1 is
added to that document's weight. For
each term that corresponds to the "or"
field, 0.5 is added. Finally, for each term
that corresponds to the "not" field, 0.5 is
subtracted. These values determine the
total weight of each document. The
documents are then sorted, according to
highest total weight, and only those above
a specified threshold are returned to the
user. This keeps the user from receiving
a plethora of useless documents, with low
rating.

Finally, these documents are
presented to the user from highest
relevance to lowest, at a rate of 10
documents at a time. The user may sift
through these documents at his own will.

5. Conclusions

From here, a lot of things could be
done to make the search engine better.
There are obvious things, such as using a
more dynamic algorithm, or retrieving
additional file types such as word
documents and various other file types.
However, this basic information should be
sufficient in creating a basis for a dynamic
search engine.

There is a wide range of uses for
such an engine. It is important to learn
how to tailor the engine to your specific
needs. No one approach is better than
another, and there are varying
applications for specific user needs. With
enough flexibility and attention to design
detail, making a new, useful search
engine is simply a matter of creativity and
approach.

4

