Overview: Evolutionary Robotics

An overview of Evolutionary Robotics as written by Stefano Nolfi and Dario Floreano

General Concepts

Behavior Based Robotics - Environmental interaction. Competitive or Cooperative?
Robot Learning - Training on incomplete data
Explicit instructions
Reinforcement - Good or bad?
Artificial Life

A Design Perspective

Divide and conquer - Perception, planning, action Building blocks - build layers upon layers Distal vs Proximal descriptions of behavior Example Scenario: Explore, avoid walls, approach target, discriminate target from wall

Examination Methods

Psychology vs. Neuroscience Connectionism - Total neural network and nervous system Embodiment - Physical aspects of a system

Evolution Problem

Natural Evolution and reproduction Survival of the fittest leads to Bootstrap Problem Solutions:

- More experimenter insight
- Incremental Evolution Simple to Complex
- Self-Organized Incremental Evolution

The Basics of Genetics

Genetic Algorithms - Artificial chromosomes randomly modified repeated over generations.
Fitness - The higher the better
Selective Reproduction - Roulette wheel
Rank based, truncation, tournament
Crossover
One point, multi-point
Mutation

Schema Theory

Schema - Template for a family of strings
1*1 = 101 and 111
N^3 schemata processed ("Implicit Parallelism")
Significant components written farther apart leads to a higher probability of being broken down

Artificial Evolution in Autonomous Systems

Goal is complex abilities through interaction with environment Expected to survive on their own Loose fitness functions for better adaptability

Neural Network

Layers: Input, Hidden/Internal, Output

Feedforward - Signals travel from input to output Recurrent – Signals may travel within network

Signals travel independently on weighted channels

- Step output is either 0 or 1 dependent on threshold
- Sigmoid squashed between 0 and 1 with slope k
- Linear graded input with slope k

Learning Rates

Supervised Learning - synaptic strengths modified by difference between desired output and output given Unsupervised Learning - Updates weights based on input value only.

A new learning rate is derived by taking the old weight and adding a new modification weight to it times a small learning rate between 0 and 1

Learning Methods

Hebbian Leaning

- Hebb Rule When two connected neurons are active, the synapse is strengthened
- Stent-Singer Rule Based on postsynaptic unit Supervised Error Based Learning
- Desired network output, changes made based on error rate between desired output and actual output Reinforcement Learning
- Designed for coarse and sparse feedback
- Maximize the positive.
- Learning in Recurrent Networks
- Output depends entirely on input pattern

Justifications For Evolving Neural Networks

- Smoother search space
- Varying evolutionary granularity
- Straightforward mapping from sensors to motor
- Robust to noise
- Biologically plausible
- GAs explore populations of networks, not singular.
- No constraints on type of architecture
- Detailed specifications of network not needed

More Concepts In Learning via Genetic Algorithms

Architecture - Encode blueprint on genotype
Indirect encoding
Learning Rules - The value of the synaptic connection can be considered as a linear combination of the presynaptic and postsynaptic and current activities weighted by a constant

Lisp and Genetic Programming

Genetic Programming - Encode the solution not the problem
Based on Lisp expressions
(+,2(*,3,2))=2+(3*2)
F={+,-,*,%,IFLTE}
T={X,Y,Z,R}
Above functions and terminals spliced together and mutated over generations.

Overview: Evolutionary Robotics

Questions? Comments?

Hope I was interesting.